InterviewSolution
Saved Bookmarks
| 1. |
If a, b, c and d are in G.P. show that `(a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2`. |
|
Answer» Let r be the common ratio of the GP a, b, c, d. Then, `b=ar, c=ar^(2)` and `d=ar^(3)`. `:. LHS=(a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2))` `=(a^(2)+a^(2)r^(2)+a^(2)r^(4))(a^(2)r^(2)+a^(2)r^(4)+a^(2)r^(6))` `=a^(4)r^(2) (1+r^(2)+r^(4))^(2)`. And, `RHS =(ab+bc+cd)^(2)=(a^(2)r+a^(2)r^(3)+a^(2)r^(5))^(2)` `=a^(4)r^(2) (1+r^(2)+r^(4))^(2)`. Hence, `(a^(2)+b^(2)+c^(2)) (b^(2)+c^(2)+d^(2))=(ab+bc+cd)^(2)`. |
|