1.

If `(a-b), (b-c),(c-a)`are in G.P. then prove that `(a+b+c)^2=3(a b+b c+c a)`

Answer» `((b-c))/((a-b))=((c-a))/((b-c)) rArr (b-c)^(2)=(a-b)(c-a)`
`rArr b^(2)+c^(2)-2bc=ac-a^(2)-bc+ab`
`rArra^(2)+b^(2)+c^(2)=ab+bc+ac`
`rArr (a+b+c)^(2)=3(ab+bc+ac)" "["adding "2(ab+bc+ac)" on both sides"]`.


Discussion

No Comment Found