1.

If `a ,b ,c`are in G.P. then prove that `(a^2+a b+b^2)/(b c+c a+a b)=(b+a)/(c+b)`

Answer» Let r be the common ratio of the given GP. Then,
`b=ar and c=ar^(2)`.
`:. LHS =(a^(2)+a^(2)r+a^(2)r^(2))/(a^(2)r+a^(2)r^(3)+a^(2)r^(2))=(a^(2)(1+r+r^(2)))/(a^(2)r(1+r+r^(2)))=1/r`
`RHS=(ar+a)/(ar^(2)+ar)=(a(1+r))/(ar(1+r))=1/r`.
Hence, `LHS=RHS`.


Discussion

No Comment Found