1.

If `S`be the sum, `P`the product and `R`the sum of the reciprocals of `n`terms of a G.P. prove that `(S/R)^n=P^2dot`

Answer» Let the given GP be `a, ar, ar^(2),..., ar^((n-1))`. Then,
`S=(a(1-r^(n)))/((1-r))` ..(i)
and `P=[axxarxxar^(2) xx...xxar^((n-1))]`
`rArr P=a^(n)r^([1+2+3+...+(n-1)])=a^(n) r^(1/2 (n-1) n)`
`rArr P=a^(n)r^(1/2 (n-1) n)`
`rArr P^(2)=a^(2n)r^((n-1)n)` ...(ii)
And, `R={1/a+1/(ar)+...+1/(ar^(n-1))}=(1/a). ({1/r^(n)-1})/({1/r-1})`
`rArr R=(r/a). ((1-r^(n)))/((1-r).r^(n))`
`rArr R=((1-r^(n)))/(a(1-r).r^((n-1)))`. ...(iii)
On dividing (i) by (iii), we get
`S/R=(a(1-r^(n)))/((1-r)). (a(1-r).r^((n-1)))/((1-r^(n)))=a^(2) r^((n-1))`
`:. (S/R)^(n)={a^(2)r^((n-1))}^(n)=a^(2n).r^((n-1)n)=P^(2)` [using (ii)].
Hence, `P^(2)=(S/R)^(n)`.


Discussion

No Comment Found