1.

If `(a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0)`, then show that `a , b , c a n d d`are in G.P.

Answer» `(a+bx)/(a-bx)=(b+cx)/(b-cx) rArr ((a+bx)+(a-bx))/((a+bx)-(a-bx))=((b+cx)+(b-cx))/((b+cx)-(b-cx))rArr b/a=c/b`.
Similarly, `(b+cx)/(b-cx)=(c+dx)/(c-dx)rArr c/b=d/c`.
`:. b/a=c/b=d/c rArr a, b, c, d` and in GP.


Discussion

No Comment Found