InterviewSolution
Saved Bookmarks
| 1. |
If `a ,b ,c ,d`are in G.P., prove that `a+b+,b+c ,c+d`are also in G.P. |
|
Answer» Let a, b, c, d be in GP with common ratio r. Then, `b=ar, c=ar^(2)` and `d=ar^(3)`. `:. (a+b)=(a+ar)=a(1+r), (b+c)=(ar+ar^(2))=ar(1+r)`, `(c+d)=(ar^(2)+ar^(3))=ar^(2) (1+r)`. `:. (b+c)^(2)=a^(2)r^(2)(1+r)^(2)` and `(a+b)(c+d)=a^(2)r^(2)(1+r)^(2)`. Consequently, `(b+c)^(2)=(a+b)(c+d)`. Hence, `(a+b), (b+c)` and `(c+d)` are in GP. |
|