InterviewSolution
Saved Bookmarks
| 1. |
If A = \(\begin{bmatrix}1 & 2 \\3 & -1 \\\end{bmatrix}\) and B = \(\begin{bmatrix}1 & 0 \\-1 & 0 \\\end{bmatrix},\) find |AB|. |
|
Answer» Given that A = \(\begin{bmatrix} 1 & 2 \\ 3 & -1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ \end{bmatrix},\) we have to find |AB| Then, |A| = \(\begin{bmatrix} 1 & 2 \\ 3 & -1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ \end{bmatrix}\) |A| = 1 × -1 -2 × 3 = -7 (Expanding along R1) |B| = 1 × 0 - 0 × -1 = 0 (Expanding along R1) Since |AB| = |A||B|, Therefore |AB| = -7 × 0 = 0 |
|