1.

If A = \(\begin{bmatrix}1 & 2 \\3 & -1 \\\end{bmatrix}\) and B = \(\begin{bmatrix}1 & 0 \\-1 & 0 \\\end{bmatrix},\) find |AB|.

Answer»

Given that A = \(\begin{bmatrix} 1 & 2 \\ 3 & -1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ \end{bmatrix},\) we have to find |AB|

Then, |A| = \(\begin{bmatrix} 1 & 2 \\ 3 & -1 \\ \end{bmatrix}\) and B = \(\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ \end{bmatrix}\)

|A| = 1 × -1 -2 × 3

= -7 (Expanding along R1)

|B| = 1 × 0 - 0 × -1

= 0 (Expanding along R1)

Since |AB| = |A||B|, Therefore |AB| = -7 × 0 = 0



Discussion

No Comment Found