1.

If `A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt`, then the value of the determinant `|(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)|` isA. `sin theta`B. `cosec theta`C. 0D. 1

Answer» Correct Answer - C
We have,
`A + B = underset(1)overset(sin theta) int (t)/(1 +t^(2)) dt + underset(1)overset("cosec" theta)int (1)/(t(1 + t^(2))) dt`
`rArr A + B = underset(1)overset(sin theta)int (t)/(1 +t^(2)) dt + underset(1)overset(sin theta)int - (u)/(1 + u^(2)) du`, where `u = (1)/(t)`
`rArr A + B = 0`
`rArr B = - A`
`:. |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2),-1)|`
`= |(A,A^(2),-A),(1,A^(2),-1),(1,2A^(2),-1)| = -|(A,A^(2),A),(1,A^(2),1),(1,2A^(2),1)| = 0`


Discussion

No Comment Found