InterviewSolution
Saved Bookmarks
| 1. |
If `A=pi/5,`then find the value of `sum_(r=1)^8tan(r A)*tan((r+1)A)dot` |
|
Answer» `tan((r+1)A-(rA))=(tan(r+1)A-tan(rA))/(1+tan(r+1)A*tan(rA))` `1+tan(rA)*tan(r+1)A=(tan(r+1)A-tan(rA))/(tanA)` `tan(rA)*tan(r+1)A=(tan(r+1)A-tan(rA))/(tanA)-1` `S=sum_(r=1)^8(tan(r+1)A-tan(rA))/(tanA)-sum_(r=1)^8 1` `=1/(tanA)sum_(r=1)^8(tan(r+1)A-tan(rA)-8` `=1/(tanA)[(tan2A-tanA)+(tan3A-tan2A)+...(tan9A-tan8A]-8` `=1/(tanA)[tan9A-tanA]-8` `tan9A=tan(9/5pi)=tan(2pi-pi/5)` `Ss=1/(tanA)(-tanA-tanA)-8` `=(-2tanA)/(tanA)-8` `=-2-8` `S=-10`. |
|