

InterviewSolution
Saved Bookmarks
1. |
If `A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3))` are vertices of an equilateral triangle whose each side is equal to a, then prove that `|(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|` is equal toA. `2a^(2)`B. `2a^(4)`C. `3a^(2)`D. `3a^(4)` |
Answer» Correct Answer - D Let `Delta` be the area of triangle ABC. Then, `Delta = (1)/(2) |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| rArr 2 Delta = |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|` `rArr 4 Delta = |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| = |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|` `rArr 16Delta^(2) = |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|`..(i) But, the area of an equilateral triangle with each side equal to a is `(sqrt3)/(4) a^(2)` `:. Delta = (sqrt3)/(4) a^(2) rArr 16 Delta^(2) = 3a^(4)`..(ii) From (i) and (ii), we obtain `|(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|^(2) = 3a^(4)` |
|