 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `ab=2a+3b, agt0, b gt0`, then the minimum value of ab isA. 12B. 24C. `(1)/(4)`D. none of these | 
| Answer» Correct Answer - B `ab=2a+3b rArr b=(2a)/(a-3)` Now `z=ab=(2a^(2))/(a-3)` `rArr" "(dz)/(da)=(2[(a-3)2a-a^(2)])/((a-3)^(2))=(2[a^(2)-6a])/((a-3)^(2))` Put `(dz)/(da)=0, therefore a^(2)-6a=0, a=0,6` Clearly a = 6 is point of minima when `a=6, b=4 rArr (ab)_("min")=6xx4=24` | |