InterviewSolution
Saved Bookmarks
| 1. |
If `b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost)`is equal to`1/2(log)_b(a-b^(2x))`(b) `2log(1-b^(x/2))``(log)_bsqrt(1-b^(2x))`(d) `sqrt(1-x^2)` |
|
Answer» `log_b(sint)=x` `sint=b^x` `sin^2t+cos^2t=1` `cos^2t=1-sin^2t` `cos^2t=1-(b^x)^2` `cost=sqrt(1-c^(2x))` `log_acost=log_bsqrt(1-b^(2x))` Option C is correct. |
|