1.

If bac is 90degree AD is it\'s bisector. If DE is perpendicular to AC. Prove that DE*(AB+AC)=AB*AC

Answer» To prove the given result,we will use the following theorm.The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angleSince AD is the bisector of {tex}\\angle{/tex}A of {tex}\\Delta{/tex}ABC.{tex}\\therefore \\quad \\frac { A B } { A C } = \\frac { B D } { D C }{/tex}\xa0[by above theorm]{tex}\\Rightarrow \\quad \\frac { A B } { A C } + 1 = \\frac { B D } { D C } + 1{/tex}[Adding 1 on both sides]{tex}\\Rightarrow \\quad \\frac { A B + A C } { A C } = \\frac { B D + D C } { D C }{/tex}{tex}\\Rightarrow \\quad \\frac { A B + A C } { A C } = \\frac { B C } { D C }{/tex}\xa0... (i)In {tex}\\Delta{/tex}\'s CDE and CBA, we have{tex}\\angle{/tex}DCE = {tex}\\angle{/tex}BCA = {tex}\\angle{/tex}C [Common]{tex}\\angle{/tex}BAC = {tex}\\angle{/tex}DEC [Each equal to 90°]So, by AA-criterion of similarity, we have{tex}\\Delta{/tex}CDE ~ {tex}\\Delta{/tex}CBA{tex}\\Rightarrow \\quad \\frac { C D } { C B } = \\frac { D E } { B A }{/tex}{tex}\\Rightarrow \\quad \\frac { A B } { D E } = \\frac { B C } { D C }{/tex}\xa0...(ii)From (i) and (ii), we obtain{tex}\\frac { A B + A C } { A C } = \\frac { A B } { D E } \\Rightarrow D E \\times ( A B + A C ) = A B \\times A C{/tex}


Discussion

No Comment Found