InterviewSolution
Saved Bookmarks
| 1. |
If `cos(theta - alpha) , costheta , cos(theta + alpha)` are in H.P. then `costheta.sec(alpha)/2 = ` |
|
Answer» If three numbers `a,b and c` are in H.P., then, `b = (2ac)/(a+c)` As, `cos(theta-alpha),costheta,cos(theta+alpha)` are in H.P., `:. costheta = (2cos(theta-alpha)cos(theta+alpha))/(cos(theta-alpha)+cos(theta+alpha))` `=>costheta = (2(cos^2thetacos^2alpha - sin^2thetasin^2alpha))/(2costhetacosalpha)` `=>costheta = (cos^2thetacos^2alpha - sin^2thetasin^2alpha)/(costhetacosalpha)` `=>costheta = (cos^2thetacos^2alpha - (1-cos^2theta)sin^2alpha)/(costhetacosalpha)` `=>costheta = (cos^2thetacos^2alpha - sin^2alpha+sin^2alphacos^2theta)/(costhetacosalpha)` `=>costheta = (cos^2theta(cos^2alpha + sin^2alpha)-sin^2alpha)/(costhetacosalpha)` `=>cos^2thetacosalpha = cos^2theta-sin^2alpha` `=>sin^2alpha = cos^2theta(1-cosalpha)` `=>(2sin(alpha/2)cos(alpha/2))^2 = cos^2theta(2sin^2(alpha/2))` `=>4sin^2(alpha/2)cos^2(alpha/2) = 2cos^2thetasin^2(alpha/2)` `=>2cos^2(alpha/2) = cos^2theta` `=>2 = cos^2thetasec^2(alpha/2)` `=>costhetasec(alpha/2) = sqrt2` |
|