

InterviewSolution
Saved Bookmarks
1. |
If `cosalpha=1/2(x+1/x)` `cosbeta=1/2(y+1/y)` then `cos(alpha-beta)` is equal toA. `sin(alpha+beta+gamma)=singammaAAgammainR`B. `cosalphacosbeta=1AAalpha,beta inR`C. `(cosalpha+cosbeta)^2=4AAalpha,beta in R`D. `sin (alpha+beta+gamma)=sinalpha+sinbeta+singammaAAa,b,gammainR` |
Answer» Correct Answer - A::B::C::D `cosalpha=1/2(x+1/x)andcosbeta=1/2(y+1/y)` since `xygt0`,we have `x+1/2ge2orle-2andy+1/yge2orle-2` `rArrcosalpha=1,cosbeta=1` `or cosalpha=-1,cosbeta=-1` `:. cosalphacosbeta=1` `rArralpha+beta" is an even multiple of " pi` `(cosalpha+cosbeta)^2=4` `rArr sin(alpha+beta+gamma)=sin(2npi+gamma)=singamma` Also, `sinalpha=sinbeta=0` |
|