1.

If `cosalpha=1/2(x+1/x)` `cosbeta=1/2(y+1/y)` then `cos(alpha-beta)` is equal toA. `sin(alpha+beta+gamma)=singammaAAgammainR`B. `cosalphacosbeta=1AAalpha,beta inR`C. `(cosalpha+cosbeta)^2=4AAalpha,beta in R`D. `sin (alpha+beta+gamma)=sinalpha+sinbeta+singammaAAa,b,gammainR`

Answer» Correct Answer - A::B::C::D
`cosalpha=1/2(x+1/x)andcosbeta=1/2(y+1/y)`
since `xygt0`,we have
`x+1/2ge2orle-2andy+1/yge2orle-2`
`rArrcosalpha=1,cosbeta=1`
`or cosalpha=-1,cosbeta=-1`
`:. cosalphacosbeta=1`
`rArralpha+beta" is an even multiple of " pi`
`(cosalpha+cosbeta)^2=4`
`rArr sin(alpha+beta+gamma)=sin(2npi+gamma)=singamma`
Also, `sinalpha=sinbeta=0`


Discussion

No Comment Found