

InterviewSolution
Saved Bookmarks
1. |
If `cosalpha+cosbeta=0=sinalpha+sinbeta`, then prove that `cos2alpha +cos2beta=-2cos(alpha +beta)`. |
Answer» Given that, `" "cosalpha+cosbeta=0=sinalpha+sinbeta` `rArr" "(cosalpha+cosbeta)^(2)-(sinalpha+sinbeta)^(2)=0` `rArr" "cos^(2)alpha-sin^(2)beta+2cosalphacosbeta-sin^(2)alpha-sin^(2)beta-2sinalphasinbeta= 0` `rArr" "cos^(2)alpha-sin^(2)alpha+cos^(2)beta-sin^(2)beta=2(sinalphasinbeta-cosalphacosbeta)` ` rArr" "cos2alpha+cos2beta=-2cos(alpha+beta)" "` Hence proved. |
|