InterviewSolution
Saved Bookmarks
| 1. |
If `"cosec"x=1+cotx`, then `x=2npi,2npi+(pi)/(2)` |
|
Answer» True Given that, `" ""cosec"x=1+cotx` `rArr" "(1)/(sinx)=1+(cosx)/(sinx)rArr(1)/(sinx)=(sinx+cosx)/(sinx)` `rArr" "sinx+cosx=1` `rArr" "(1)/(sqrt(2))*sinx+(1)/(sqrt(2))*cosx=(1)/(sqrt(2))` `rArr" "sin""(pi)/(4)sinx+cosxcos""(pi)/(4)=(1)/(sqrt(2))` `rArr" "cos(x-(pi)/(4))=cos""(pi)/(4)` `therefore" "x-(pi)/(4)=2npipm(pi)/(4)` For positive sign, `" "x=2npi+(pi)/(4)+(pi)/(4)=2npi+(pi)/(2)` For negative sign, `" "x=2npi-(pi)/(4)+(pi)/(4)=2npi` |
|