1.

If `cosectheta + cottheta=p`, then prove that the `cos theta=(p^2-1)/(p^2+1)`

Answer» Given, `cosectheta + cottheta=p`
`rArr 1/(sintheta)+ (costheta)/(sintheta)=p` `[therefore cosectheta=1/(sintheta)` and `cottheta=(costheta)/(sintheta)]`
`rArr (1+costheta)/(sintheta)=p/1`
`rArr (1+costheta)^(2)/(sin^(2)theta)=p^(2)/1` [take square on both sides]
`rArr (1+ cos^(2)theta + 2 cos theta)/(sin^(2)theta)=p^(2)/1`
Using componendo and dividendo rule, we get
`((1+cos^(theta)+2costheta)-sin^(2)theta)/((1+cos^(2)theta+2costheta)+sin^(2)theta)= (p^(2)-1)/(p^(2)+1)`
`rArr (1+cos^(2)theta + 2costheta-(1-cos^(2)theta))/(1+2costheta+(cos^(2)theta+sin^(2)theta))=(p^(2)-1)/(p^(2)+1)` `[therefore sin^(2)theta + cos^(2)theta=1]`
`rArr (2cos^(2)theta + 2costheta)/(2+2costheta) = (p^(2)-1)/(p^(2)+1)`
`rArr (2costheta(costheta+1))/(2(costheta+1))=(p^(2)-1)/(p^(2)+1)`
`therefore costheta=(p^(2)-1)/(p^(2)+1)` Hence proved.


Discussion

No Comment Found