InterviewSolution
Saved Bookmarks
| 1. |
Prove that : `(sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosecα"`. |
|
Answer» L.H.S. `=(sinalpha+cosalpha)(tanalpha+cotalpha)` `=(sinalpha+cosalpha)((sinalpha)/(cosalpha)+(cosalpha)/(sinalpha))=(sinalpha+cosalpha)((sin^(2)alpha+cos^(2)alpha)/(sinalphacosalpha))` `=(sinalpha+cosalpha)((1)/(sinalphacosalpha))=(sinalpha)/(sinalphacosalpha)+(cosalpha)/(sinalphacosalpha)` `=(1)/(cosalpha)+(1)/(sinalpha)=secalpha+"cosec"alpha=R.H.S.` |
|