InterviewSolution
Saved Bookmarks
| 1. |
If `asintheta+bcostheta=c` then prove that `acostheta-bsintheta=sqrt(a^2+b^2-c^2)` |
|
Answer» `asintheta+bcostheta=c` `rArr(asintheta+bcostheta)^(2)=c^(2)` `rArra^(2)sin^(2)theta+b^(2)cos^(2)theta+2ab "sin"thetacostheta=c^(2)` `rArra^(2)+b^(2)-c^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta-2ab"sin thetacostheta` `rArra^(2)+b^(2)-c^(2)=(acostheta-bsintheta)^(2)` `rArracostheta-bsintheta=sqrt(a^(2)+b^(2)-c^(2))` |
|