1.

If `asintheta+bcostheta=c` then prove that `acostheta-bsintheta=sqrt(a^2+b^2-c^2)`

Answer» `asintheta+bcostheta=c`
`rArr(asintheta+bcostheta)^(2)=c^(2)`
`rArra^(2)sin^(2)theta+b^(2)cos^(2)theta+2ab "sin"thetacostheta=c^(2)`
`rArra^(2)+b^(2)-c^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta-2ab"sin thetacostheta`
`rArra^(2)+b^(2)-c^(2)=(acostheta-bsintheta)^(2)`
`rArracostheta-bsintheta=sqrt(a^(2)+b^(2)-c^(2))`


Discussion

No Comment Found