InterviewSolution
Saved Bookmarks
| 1. |
If `e^y(x+1)=1,s howt h a t(d^2y)/(dx^2)=((dy)/(dx))^2dot` |
|
Answer» `e^(y)(x+1)=1` `impliese^(y)=(1)/(x+1) " " ` ...(1) Differentiate both sides w.r.t. x `e^(y)(dy)/(dx)=(-1)/((x+1)^(2))` `implies(1)/(x+1)(dy)/(dx)= -(1)/((x+1)^(2)) " " ` From equation (1) `implies (dy)/(dx)=-(1)/(x+1)` `implies(d^(2)y)/(dx^(2))=(d)/(dx)(-(1)/(x+1)) = (1)/((x+1)^(2))=(-(1)/(x+1))^(2)=((dy)/(dx))^(2)` ` " " ` Hence Proved. |
|