1.

If `e^y(x+1)=1,` show that `(d^2y)/(dx^2)=((dy)/(dx))^2.`

Answer» We have
`e^(y)(x+1)=1 rArre^(y)=(1)/((x+1))" ...(i)"`
`rArr y=log{(1)/((x+1))}=log1-log(x+1)`
`rArr y=-log (x+1)." ...(ii)"`
`therefore(dy)/(dx)=(-1)/((x+1))`
`rArr(d^(2)y)/(dx^(2))=(1)/((x+1)^(2))=((dy)/(dx))^(2).`
Hence, `(d^(2)y)/(dx^(2))=((dy)/(dx))^(2).`


Discussion

No Comment Found