1.

If ey(x + 1) = 1, show that d2y/dx2 = (dy/dx)2

Answer»

Given that ey(x + 1) = 1

⇒ ey = 1/(x + 1)

Differentiating both sides w.r.t. x, we get

ey(dy/dx) = - 1/(x + 1)2 ⇒ 1/(x + 1)dy/dx = - 1/(x + 1)2

⇒ dy/dx = - 1/(x + 1)

Again, Differentiating both sides w.r.t. x, we get

d2y/dx2 = 1/(x + 1)2 = (- 1/(x + 1))2 = (dy/dx)2



Discussion

No Comment Found

Related InterviewSolutions