1.

If`f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ,x=pi/2`is continuous at `x=pi/2,t h e nk=``-1/(16)`(b) `-1/(32)`(c) `-1/(64)`(d) `-1/(28)`

Answer» `lim_(x->(pi)/2) (1-sinx)/(pi-2x)^2xx(logsinx)/log(1+pi^2-4pix+4x^2)`
`x=pi/2-h`
`lim_(h->0) (1-cosh)/(4h^2)xx(logcosh)/log(1+4h^2)`
`(1-cosh)/h^2=(2sin^2(h/2))/(h^2/2.2)`
`=2/4(sin^2(h/2))/(h/2)=1`
`=1/4xx1/2xx(log cosh)/(log(1+4h^2))`
`lim_(h->0) 1/8xx(log cosh)/(log (1+4h^2))`
`=(1/cosh)-sinh/(1/1+4h^2xx8h)`
`=-tanh/((8h)/(1+4h^2))`
`=1/8xx-((1+4h^2)tanh)/(8h)`
`=1/8xx-1xx1xx1/8`
`=-1/64`


Discussion

No Comment Found

Related InterviewSolutions