1.

If `f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(x+1))|` then f(50)+f(51)..f(99) is equal to

Answer» Correct Answer - A
We have, `f(x) |(1,x,x +1),(2x,x (x-1),(x+1) x),(3x(x -1),x (x -1) (x -2),(x +1) x (x -1))|` Applying `C_(3) rarr C_(3) - C_(2)`, we get
`f(x) |(1,x,1),(2x,x(x -1),2x),(3x(x -1),x(x -1) (x -2),3x (x -1))| =0`
`:. f(100) = 0


Discussion

No Comment Found