InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):}` is a continous at x=0, then k=A. `12(log, 4)^(2)`B. `96(log, 2)^(3)`C. `(log, 4)^(3)`D. none of these |
|
Answer» Correct Answer - B Since f(x) is a continous at x=0. Therefore, `underset(x to 0)lim f(x)=f(0)` `Rightarrow underset(x to 0)lim ((4^(x)-1)^(3))/("sin" (pi)/(4)log(1+x^(2)/(3)))=k` `Rightarrow underset(x to 0)lim (12((4^(x)-1^(3))/(x)))/((("sin"(pi)/(4))/(pi//4))("log"(1+x^(2)//3)/(x^(2)//3)))=k` `Rightarrow 12(log 4)^(3)=k Rightarrow k=96(log2)^(3)` |
|