1.

If `f(x)=|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|`, then `f(2x)-f(x)` equalsA. `a(2a + 3x)`B. `ax(2x + 3a)`C. `ax(2a + 3x)`D. `x(2a + 3x)`

Answer» Correct Answer - C
Applying `R_(2) rarr R_(2) - xR_(1) and R_(3) rar R_(3) - xR_(3) - xR_(2)`, we get
`f(x) = |(a,-1,0),(0,a +x,-1),(0,0,a +x)| = a (a + x)^(2)`
`:. f(2x) - f(x) = a (a +2x)^(2) -a(a +x)^(2) = ax (2a + 3x)`


Discussion

No Comment Found