1.

If f(x) \(\begin{cases}-x^2; &-1\leq x < 0\\ 4x - 3;& 0 < x \leq1\\5x^2 - 4x; & 1 < x \leq 2\end{cases}\)  then test the continuity of f (x) is closed interval [- 1, 2].

Answer»

Here, we will test the continuity of function at x = 0 and 0 ∈ [-1,2].

Left hand limit

f(0 – 0) = limh→0 f(0 – h)

= limh→0 (0 – h)2

= limh→0 h2

= 0

Right hand limit

f (0 + 0) = limh→0 f(0 + h)

= limh→0 4(0 + h) – 3

= limh→0 Ah – 3

= 0 – 3

= – 3

∴ f (0 – 0) ≠ f(0 + 0)

LHL ≠ RHL

So, function is not continuous at x = 0 and x ∈ [- 1, 2]

At x = 1

Left hand limit

f(1 – h) = limh→0 4(1 – h) – 3

= limh→0 4 – 3 – Ah

=4 – 3 – 0 = 1

Right hand limit

f(1 + h) = limh→0 5(1 + h)2 – 4 (1 + h)

= limh→0 5(1 + h2 + 2h) – (4 + Ah)

= limh→0 5h2 +10h + 5 – 4 – 4h

= 5 × 0 + 10 × 0 + 1 – 4(0)

= 1

Value of function at x = 1

f(1) = 4 × 1 – 3 = 1

∵ limh→0 f(1 – A) = f(1) = limh→0 f(1 + h)

∴Function is continuous at x = 1.

Hence, function is not continuous in interval [-1, 2],



Discussion

No Comment Found

Related InterviewSolutions