1.

If `f(x)=int_0^x (sint)/(t)dt,xgt0,` thenA. f(x) has a local maxima at x =`npi(n=2k,kin I^(+))`B. f(x) has a local minimum at x =`npi(n=2k,kin I^(+))`C. f(x) has neither maxima nor minima at x =`npi(n in I^(+))`D. f(x) has local maxima at x =`npi(n=2k-1,k in I^(+))`

Answer» Correct Answer - 2,4
`f(x) =(sinx )/(x)`
`for f(x)=0,(sinx)/(x)=0 or x =npi,(n in I ,n ne0)`
`f(x)=(xcosx-sinx)/(x^(2))`
`f(npi)=(cosnpi)/(npi)lt0if n=2k -1and gt0nif n =2k,kin I^(+)`
Hence f(X) has local maxima at `x = npi` , where n=2k -I and local minima at `x =npi, n =2k` where `k in I^(+)`


Discussion

No Comment Found