1.

If `f(x)=(t+3x-x^2)/(x-4),`where `t`is a parameter that has minimum and maximum, then the range of valuesof `t`is`(0,4)`(b) `(0,oo)``(-oo,4)`(d) `(4,oo)`A. `(0,4)`B. `(0,oo)`C. `-(oo,4)`D. `(4,oo)`

Answer» Correct Answer - 3
`f(x)=(t+3x-x^(2))/(x-4),f(x)=(x-4)(3x-2x)-(t+3x-x^(2))/(x-4)^(2)`
for maximum or minimum f(X)=0
`-2x^(2)+11x-12-t-3x+x^(2)=0`
`-x^(2)+8x-(12-t)=0`
For one maxima and minima
`64-4(12+t)gt0`
`16-12-tgt0, i.e 4gtt or tlt4`


Discussion

No Comment Found