1.

If f(x)=`(tan(pi/4-x))/(cot2x) ` for `x!=pi/4,`find the value of which can be assigned to f(x)at `x=pi/4`so that the function f(x)becomes continuous every where in `[0,pi/2]`

Answer» `f(x) = (tan(pi/4 - x))/(cot 2x)`
`lim_(x-> pi/4) (tan(pi/4 - x) )/(cot 2x) `
`lim_(t->0) (tan(-t))/(cot(2t + pi/2))`
`lim_(t->0) (- tant)/(- tan(2t)`
`lim_(t->0) (tan t)/(tan 2t) `
`lim_(t->0) ((tan t)(1- tan^2 t))/(2 tan t)`
`= (1- tan^2 t)/2`
`f(pi/4) = 1/2`
Answer


Discussion

No Comment Found

Related InterviewSolutions