InterviewSolution
Saved Bookmarks
| 1. |
If f(x)=`(tan(pi/4-x))/(cot2x) ` for `x!=pi/4,`find the value of which can be assigned to f(x)at `x=pi/4`so that the function f(x)becomes continuous every where in `[0,pi/2]` |
|
Answer» `f(x) = (tan(pi/4 - x))/(cot 2x)` `lim_(x-> pi/4) (tan(pi/4 - x) )/(cot 2x) ` `lim_(t->0) (tan(-t))/(cot(2t + pi/2))` `lim_(t->0) (- tant)/(- tan(2t)` `lim_(t->0) (tan t)/(tan 2t) ` `lim_(t->0) ((tan t)(1- tan^2 t))/(2 tan t)` `= (1- tan^2 t)/2` `f(pi/4) = 1/2` Answer |
|