1.

If `f(x) = tanx-tan ^(3) x + tan^(5) x - tan ^(7) x + ... infty` for `olt x lt pi/4 , "than" int_(0)^(pi//4) f (x) dx=`A. 1B. 0C. `1/4`D. `1/2`

Answer» Correct Answer - C
`f(x)=tanx-tan^(3)x+tan^(5)x-...infty` [ it is a Gp]
`rArrf(x)=(tanx)/(1+tan^(2)x)=(tanx)/(sec^(2)x)=(sin2x)/(2)`
`thereforeint_(0)^(pi//4)f(x)dx=int_(0)^(pi//4)(sin2x)/(2)dx=[-(cos2x)/(4)]_(0)^(pi//4)=(1)/(4)`


Discussion

No Comment Found