

InterviewSolution
Saved Bookmarks
1. |
If `f(x)={(x^3+x^2-16x+20)/(x-2)^2,x ne 0` k, x=0 is continuous for all real values of x, find the value of K. |
Answer» x=0 f(0)=k R.H.L `=underset(xrarr0^+)lim f(x)==underset(xrarr0)limf(0+h)` `=underset(hrarr0)lim(h^3+h^2-16h+20)/(h-2)^2` `=underset(hrarr0)lim((h-2)^2(h+5))/(h-2)^2` `=underset(hrarr0)lim((h-5))/(1)=0+5=5` `L.H.L =underset(xrarr0^-)limf(x)=underset(xrarr0)limf(0-h)` `=underset(hrarr0)lim((-h)^2+(-h)^2-16(-h)+20)/(-h-2)^2` `=underset(hrarr0)lim(-h^3+h^3+16h+20)/(h+2)^2` `=underset(hrarr0)lim((h+2)^2(-h+5))/((h+5)^2)` `=underset(hrarr0)lim((-h+5))/(1)=5` `therefore`(fx) is continuous at x=0 `therefore` R.H.L=f(0)=L.H.L `rArr` K=5. |
|