InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):}` is a continous at x=0, thenA. `m in (0,oo)`B. `m in (-oo,0)`C. `m in (1,oo)`D. `m in (-oo,1)` |
|
Answer» Correct Answer - A If f(x) is a continous at x=0, then `underset (x to 0^(-))f(x)=underset(x to 0^(+))lim f(x)=f(0)=0` Now, `underset(x to 0^(-))limf(x)=underset(h to 0)lim f(0-h)=underset(h to 0)lim (-h)^(m) sin ((-1)/(h))` `Rightarrow underset(x to 0^(-))lim f(x)=underset(h to 0)lim (-h)^(m) sin ((1)/(h))=0" only when m"gt0 and underset(x to 0^(+))limf(x)=underset(h to 0)lim f(0+h)` `Rightarrow underset(x to 0^(+))lim f(x)=underset(x to 0) h^(m) sin ((1)/(h))=0,"only when m"gt0` Hence, f(x) is a continous at x=0, if `m gt 0` |
|