1.

If `f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}|`, then the value of `(d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1` isA. -1B. 0C. 1D. independent of a

Answer» Correct Answer - B
We have,
`:." "f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}|`
`implies" "(d^(n))/(dx^(n))(f(x))=|{:(n!,sin((npi)/(2)+x),cos((npi)/(2)-x)),(n!," ""sin"(npi)/(2)," ""cos"(npi)/(2)),(a," "a^(2)," "a^(3)):}|`
`implies" "{(d^(n))/(dx^(n))(f(x))}_(x=0)=|{:(n!," ""sin"(npi)/(2)," ""cos"(npi)/(2)),(n!," ""sin"(npi)/(2)," ""cos"(npi)/(2)),(a," "a^(2)," "a^(3)):}|=0`


Discussion

No Comment Found