InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}|`, then the value of `(d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1` isA. -1B. 0C. 1D. independent of a |
|
Answer» Correct Answer - B We have, `:." "f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}|` `implies" "(d^(n))/(dx^(n))(f(x))=|{:(n!,sin((npi)/(2)+x),cos((npi)/(2)-x)),(n!," ""sin"(npi)/(2)," ""cos"(npi)/(2)),(a," "a^(2)," "a^(3)):}|` `implies" "{(d^(n))/(dx^(n))(f(x))}_(x=0)=|{:(n!," ""sin"(npi)/(2)," ""cos"(npi)/(2)),(n!," ""sin"(npi)/(2)," ""cos"(npi)/(2)),(a," "a^(2)," "a^(3)):}|=0` |
|