1.

If `int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx ,` then A is equal to

Answer» Correct Answer - B
Let ` l = int _(0)^(pi) x f ( sin x) dx " "` …(i)
` = int _(0)^(pi) (pi-x) f[ sin (pi-x) ] dx `
` rArr l = int _(0)^(pi) (pi-x) f(sin x) dx " "` ...(ii)
` 2l = int _(0)^(pi) pi f (sin x) dx = 2pi int _(0)^(pi//2) f(sin x) dx `
` rArr l = pi int _(0)^(pi//2) pif(sin x) dx = 2pi int_(0)^(pi//2) f(sin x) dx `
` rArr l = pi int_(0)^(pi//2) f(sin x) dx = A int_(0) ^(pi//2) f(sin x) dx `
` :. A = pi`


Discussion

No Comment Found