1.

If ` int _(0)^(x^(2)) f(t) dt = x cos pix` , then the value of f(4) isA. 1B. `1/4`C. `-1`D. `(-1)/4`

Answer» Correct Answer - B
`int_(0)^(x^(2))f(t)dt=xcospix`
On differentiating both sides , we get
`2xf(x^(2))=(-xsinpix)/(pi)+cospix`
`rArrf(x^(2))=-(xsinpix)/(2pix)+(cospix)/(2x)`
`thereforef(4)=f(2^(2))=(-2sin2pi)/(4pi)+(cos^(2)pi)/(4)=(1)/(4)`


Discussion

No Comment Found