InterviewSolution
Saved Bookmarks
| 1. |
If `int_(log" "2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6)`, then `e^(x)` is equal toA. 1B. 2C. 4D. `-1` |
|
Answer» Correct Answer - C Let ` l = int _(log2)^(x) e^(u)/(e^(u)(e^(u)-1)^(1//2) )du ` Put `e^(u) - 1 = t^(2) rArr e^(u) du = 2t dt` ` :. l = int _(1)^(sqrt(e^(x)-1))dt/((1+t^(2))) = 2 [ tan^(-1) t]_(1)^(sqrt(e^(x)-1))` ` = - 2 [ tan^(-1) sqrt(e^(x)-1) -pi/4 ] = pi/6` [ Given ] ` rArr tan^(-1) sqrt(e^(x)-1) = pi/12 + pi/4 = pi/3 ` ` rArr sqrt(e^(x)-1) = tan (pi/3) = sqrt(3)` ` rArr e^(x) = 3+1 = 4` |
|