InterviewSolution
Saved Bookmarks
| 1. |
If `lim_(x->0) (a+bx sin x + c cosx)/x^4=2` then a=, b=, c= |
|
Answer» `lim_(x->0) (a+bxsinx+c cosx)/x^4 = 2` Here, we will use, `sinx = x-x^3/(3!)+x^5/(5!)+...` `cosx = 1-x^2/(2!)+x^4/(4!)+...` So, given equation becomes, `lim_(x->0) (a+(bx^2-(bx^4)/6+...)+(c-(cx^2)/2+(cx^2)/24+...))/x^4 = 2` Now, terms of `x` with power less than `4` and more than `4` will be `0` . `:. a+c = 0=> a = -c->(1)` `b-c/2 = 0=>c = 2b->(2)` Only terms with `x^4` will have some value. ` :. -b/6+c/24 = 2` `=>-4b+c = 48` From (2), `=>-4b+2b = 48 => b = -24` `=>c = 2**(-24) = -48` `=a = -c = 48` |
|