

InterviewSolution
Saved Bookmarks
1. |
If `ln((e-1)e^(xy) +x^2)=x^2+y^2` then `((dy)/(dx))_(1,0)` is equal to |
Answer» `"We have, "(e-1)e^(xy)+x^(2)=e^(x^(2))+y^(2)` Differentiating both sides w.r.t. x, we get `(e-1)cdote^(xy)cdot(xcdot(dy)/(dx)+y)+2x=e^(x^(2)+y^(2)).(2x+2y(dy)/(dx))` Putting x=1 and y = 0, we get `(e-1)((dy)/(dx))+2=e(2+0)` `rArr" "((dy)/(dx))_((1,0))=2` |
|