1.

If `("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b, "then" k=`

Answer» Correct Answer - D
We have,
`("log"_(a)x)/("log"_(ab)x) = ("log"_(x)ab)/("log"_(x)a) = "log"_(a)ab = "log"_(a)a + "log"_(a)b = 1 + "log"_(a)b`
`therefore ("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b`
`rArr 1 + "log"_(a)b = 4 + k + "log"_(a)b rArr 1 = 4 + k rArr k = -3`


Discussion

No Comment Found