1.

If logxa, \(a^{\frac{x}{2}}\) and logbx are in GP, then x is equal to :(a) loga (logba) (b) loga (loge a) – loga (loge b) (c) –loga (logab) (d) both (a) and (b)

Answer»

(b) loga (loge a) – loga (loge b) 

 logxa, \(a^{\frac{x}{2}}\), logbx are in GP ⇒ \(\big[a^{\frac{x}{2}}\big]^2\) = logxa . logbx

⇒ ax\(\frac{\text{log}\,a}{\text{log}\,x}.\frac{\text{log}\,x}{\text{log}\,b}\)

⇒ ax\(\frac{\text{log}\,a}{\text{log}\,b} = \text{log}_b\,a\) 

⇒ x = loga (logba)

= log a = \(\frac{\text{log}_e\,a}{\text{log}_e\,b}\) = loga (loge a) – loga (loge b) 



Discussion

No Comment Found