InterviewSolution
Saved Bookmarks
| 1. |
If logxa, \(a^{\frac{x}{2}}\) and logbx are in GP, then x is equal to :(a) loga (logba) (b) loga (loge a) – loga (loge b) (c) –loga (logab) (d) both (a) and (b) |
|
Answer» (b) loga (loge a) – loga (loge b) logxa, \(a^{\frac{x}{2}}\), logbx are in GP ⇒ \(\big[a^{\frac{x}{2}}\big]^2\) = logxa . logbx ⇒ ax = \(\frac{\text{log}\,a}{\text{log}\,x}.\frac{\text{log}\,x}{\text{log}\,b}\) ⇒ ax = \(\frac{\text{log}\,a}{\text{log}\,b} = \text{log}_b\,a\) ⇒ x = loga (logba) = log a = \(\frac{\text{log}_e\,a}{\text{log}_e\,b}\) = loga (loge a) – loga (loge b) |
|