InterviewSolution
Saved Bookmarks
| 1. |
If `(sec^4theta)/a+(tan^4theta)/b=1/(a+b),`then prove that `|b|lt=|a|`. |
|
Answer» `(sec^4theta)/a+(tan^4b)/b=1/(a+b)=(sec^2theta-tan^2theta)/(a+b)` `rArr(sec^4theta)/(a(a+b))[(a+b)sec^2theta-a]+tan^2theta/(b(a+b))[(a+b)tan^2theta+b]=0` `rArra tan^2theta+bsec^2theta=0` `rArrsin^2theta=-b/a` Since`sin^2thetale1` `rArrabs(b/a)le1orabsbleabsa` |
|