1.

If `(sin^-1x+sin^-1w)(sin^-1y+sin^-1z)=pi^2`, then

Answer» given `pi^2 = pi xx pi = - pi xx - pi`
`(sin^-1 x + sin^-1 w)(sin^-1 y + sin^-1 z) = pi xx pi `
max value of `sin^-1 x + sin^-1 w = sin^-1 1 + sin^-1 1 = pi/2 + pi/2 = pi`
max `(sin^-1 y + sin^-1z) = -pi/2 - pi/2 = -pi`
`pi^2, x=1, w=1, y=1, z=1`
`D= |(1,1),(1,1)| = 0`
when `-pi^2 , x=y=z=w=-1`
`D= |(-1^(n1), -1^(n2)), (-1^(n3), -1^(n4))|`
`= -1^(n1+n4) - (-1)^(n2+n3)`
max [D]=`max[(-1)^(n1+n4) - (-1)^(n2+n3)]`
`= 1-(-1)=2`
min(D) = `-1+ (-1)= -2`
option a & d is correctanswer


Discussion

No Comment Found