InterviewSolution
Saved Bookmarks
| 1. |
If `sin^2(theta-alpha)c a salpha=cos^2(theta-alpha)sinalpha=msinalphacosalpha,`then prove that `|m|geq1/(sqrt(2))` |
|
Answer» `sin^2(theta-alpha)cosalpha=msinalphacosalpha` `sin^2(theta-alpha)=msinalpha-(1)` `cos^2(theta-alpha)sinalpha=msinalphacosalpha` `cos^2(theta-alpha)=mcosalpha-(2)` adding equation 1 and 2 `sin^2(theta-alpha)+cos^2(theta-alpha)=m(sinalpha+cosalpha)` `1=m(sinalpha+cosalpha)` `[sinalpha+cosalpha=1/m]1/sqrt2` `1/sqrt2sinnalpha+1/sqrt2cosalpha=1/(sqrt2m)` `sin(alpha+pi/4)=1/(sqrt2m)` `|sinx|<=1` `|sin(alpha+pi/4)|<=1` `|1/(sqrt2m)|<=1` `|1/m|<=sqrt2` `|m|>=1/sqrt2`. |
|