InterviewSolution
Saved Bookmarks
| 1. |
If `sin x + cos x = 1/5`, then tan 2x is |
|
Answer» `sinx+cosx=1/5` we can replace `cosx=sqrt(1-sin^2(x))` =>`sqrt(1-sin^2(x))=1/5-sinx` squaring on both sides `1-sin^(2)x=1/25+sin^(2)x-2/5sinx` on solving we get =>`50sin^(2)x-10sinx-24=0` =>`50sin^(2)x-40sinx+30sinx-24=0` =>`(5sinx-4)(10sinx+6)=0` => thus, `sinx=4/5 or -3/5` thus `cosx=-3/5 or 4/5` thus `tanx=-4/3 or -3/4` `tan2x=(2tanx)/(1-tan^(2)x)` substituting values of `tanx` we get `tan2x=24/7 or -24/7` |
|