1.

If ( sin x) (cos y) = `1//2,` then `d^(2)y//dx^(2)` at `(pi//4, pi//4)` isA. `-4`B. `-2`C. `-6`D. 0

Answer» `(sin x ) (cos y )=(1)/(2)`
`therefore" "(cos x ) (cos y) - sin y sin x (dy)/(dx) =0`
`"or "(dy)/(dx)=(cot x )(cot y)`
`"or "(d^(2)y)/(dx^(2))=-cosec^(2)xcdotcot y -cosec^(2)y cot xcdot (dy)/(dx)`
`"Now, "((dy)/(dx))_(((pi//4,pi//4)))=1`
`"or "((d^(2)y)/(dx^(2)))_(((pi//4,pi//4)))=-(2) (1) -(2) (1) (1) =-4`


Discussion

No Comment Found