InterviewSolution
Saved Bookmarks
| 1. |
If `sin17^(@)=(x)/(y)` then prove that `sec17^(@)-sin73^(@)=(x^(2))/(ysqrt(y^(2)-x^(2)))` |
|
Answer» `LHS=sec17^(@)-sin73^(@)` `(1)/(cos17^(@))-sin(90^(@)-17^(@))` `=(1)/(cos17^(@))-cos17^(@)=(1-cos^(2)17^(@))/(cos17^(@))` `=(sin^(2)17^(@))/(sqrt(1-sin^(2)17^(@)))=(((x)/(y))^(2))/(sqrt(1-((x)/(y))^(2)))` Hence `sec17^(@)-sin73^(@)=(x^(2))/(ysqrt(y^(2)-x^(2)))` |
|