1.

If `sin51^(@)=(a)/sqrt(a^(2)+b^(2))` then find the value of `tan39^(@)`

Answer» `sin51^(@)=(a)/sqrt(a^(2)+b^(2))orsin^(2)51^(@)=(a^(2))/(a^(2)+b^(2))`
or, `sin^(2)(90^(@)-39^(@))=(a^(2))/(a^(2)+b^(2))or,cos^(2)39^(@)=(a^(2))/(a^(2)+b^(2))`
or, `sec^(2)39^(@)(a^(2)+b^(2))/(a^(a))or,1+tan^(2)39^(@)=(a^(2)+b^(2))/(a^(2))`
`tan^(2)39^(@)=(a^(2)+b^(2))/(a^(2))-1`
`tan^(2)39^(@)=(a^(2)+b^(2)-a^(2))/(a^(2))ortan^(2)39^(@)=(b^(2))/(a^(2))`
or, `tan39^(@)=(b)/(a)`
Hence `tan39^(@)=(b)/(a)`.


Discussion

No Comment Found