1.

If sinA+cosa=√3 then prove that tanA+ cotA=1

Answer» Sin A+Cos A = √3Squaring both sides, we get\xa0(Sin A+ Cos A)2\xa0= (√3)2Sin2\xa0A+ Cos2A + 2 Sin A Cos A = 31+2Sin A Cos A = 32SinA CosA = 3-1=2SinA CosA = 2/2=1Tan A + Cot ASin A/ Cos A + CosA/Sin ASin2\xa0A+ Cos2A/ Sin A Cos A = 1/1 =1Hence Proved


Discussion

No Comment Found